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Abstract. We compute the scaling dimensions of order parameters in the ADE lattice 
models. Some connection is made between the lattice algebra and the operator algebra in 
conformal invariant theories. 

1. Introduction 

In a recent work (Pasquier 1987a) the author defined lattice statistical models which 
led him to conjecture a classification for unitary conformal theories with a central 
charge smaller than or equal to one (Friedan et a1 1984). In these models it was not 
difficult to guess the expression of order parameters generalising results previously 
obtained by Andrews et af (1984) and Huse (1984) in the restricted solid-on-solid 
(RSOS) model case. It remained to compute their critical exponents which is the aim 
of this paper. To obtain them, we re-express the two-point correlation function of 
magnetic operators in terms of correlation functions which can be evaluated in the 
continuum limit. This method generalises to these models the one used by den Nijs 
(1983) to compute the magnetic exponents of the Potts model. 

In § 1 we describe the models and introduce the basic techniques required to study 
them. In § 2 we compute the critical exponents and identify the order parameters. In 
§ 3 we make a connection between the operator algebra of lattice models and the 
operator algebra in conformal theories. This enables us to conjecture about the lattice 
models. 

1 . 1 .  The models 

The models are characterised by a square lattice on a cylinder and a Coxeter diagram 
(figure 1). The square lattice rotated by 45" has N rows and M columns (figure 2).  
The rows are numbered from 0 to N. Similarly, the columns are numbered from 0 to 
M - 1, the column numbered M being identical with that numbered 0. Each point of 
the Coxeter diagram has a height marked on it. Each site of the lattice is assigned an 
arbitrary height with the restriction that two heights on neighbouring sites are also 
heights on neighbouring points of the Coxeter diagram. Each assignment of heights 
induces a decomposition of the lattice into two interpenetrating (even and odd) 
sublattices such that all heights of a given sublattice have the same parity. 

In a transfer matrix approach we define the Hilbert space on which operators act: 
consider a column of the lattice as in figure 3 and label the sites by i ( i  will sometimes 
be called the level). A base for states will be a set of heights la)= 
1. . . u - ~ ( T - ~ + ,  . . . a N .  . .) such that the two successive heights are constrained to be 
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Name of t h e  D i a g r a m  Coxeter  Exponent 
a lgeb ra  number 

n 
* 2 : 2  4 n + l  1 , 2 ,  .n 
1 2 3 4  

A n 

0, 2 ( n - 1 )  1,3. , 2 n - 3 . n - 1  

12 1,4,5,1,8,11 € 6  

18 1,5,7,9,11,13,17 € 7  

1 2 3 4 5 6 7  
E8 * 2 : : - : 4 3 0  1,7,11,13,17,19,23,29 

0 

Figure 1. The Coxeter diagram. 

L e v e l  x = O  1 2 3 4 5 6 7 8 9 10.M 
y - 0  
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N.10 

Figure 2. The square lattice. 

linked on the Coxeter diagram (figure 1). It can also be viewed as an  infinitely long 
path on the diagram (figure 1). Far from the origin, paths are assumed to obey certain 
periodicity conditions characterising the vacuum. 

1.2. Operator algebra 

We define B K N  as the algebra of matrices which act on heights uI, K S uI S N and 
let uK, U N  remain unchanged: 



ADE lattice models 5709 

UC 

02 

,UL = 0 

U5!{,:; 07 08 a 6 = o  

Figure 3. A column of the lattice i, is represented at level 5. I t  induces a bar between u4 
and u6. 

> a s = [  

a9 

0 1 9  

A base of Z K N  (as was first discussed by Ocneanu (1986)) can be built as follows. 
Consider two paths a,  p of length n going from identical heights at level K and ending 
at identical heights at level N. Define an operator fa@ in g K N :  

Clearly the set {fa@} indexed by paths starting and ending at the same height makes 
a base of 9 K N .  

The total operator algebra is the reunion of all B K N  

9 = UBKN 9 (3) 

It can be convenient to define g K N  as the set of matrices that commute with 9-rK 
and BN+= 

aKN = 9 k S K  n ah+= (4) 

where 9' means the commutant of 9. 9 naturally splits into two components: 

9 = 9'09- ( 5 )  

where 9+ acts only on paths such that U, - i is even and 9- on paths such that ut - i 
is odd. 

1.3. Trace 

In an earlier paper (Pasquier 1987a) we defined the trace of a projector as the dimension 
of its image space divided by the dimension of the total Hilbert space in the infinite 
lattice limit. The result can be described as follows (this trace was also considered by 
Ocneanu (1986)). 

To the diagram of figure 1 attach its incidence matrix C acting on vector components 
labelled by heights on the diagram uj 
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where means that the summation is on all points j  neighbouring i on the diagram. 
Let SI be the vector with the largest eigenvalue /3 of C; all components of S, are 
positive by the Perron-Frobenius theorem. Normalise S, such that 

C S f = l  if pu, U+. 

is the projector of gKN defined by 

Pu, 
Then 

. ( + K u K + I  . . . g N . .  . ) = I . .  . ( + K u K + ,  . . . g N . .  .) = O  on any other path. (7) 

Tr P,, uh. =/3-(N-K)S K S N .  (8) 

pu, O h  = c pu, U,Oh+I 

Since 

,W+I--,h 

both projectors should have the same trace which results from 

c S,,*,=PS,, 
uv+1-,J\ 

Tr 1 = 1 due to the normalisation of S,. 
The physical interpretation of this trace is clarified by noting that Tr P,, is the 

expectation value (P,,) computed by Andrews et a1 (1984) at the critical point in the 
RSOS models (the diagram in figure 1 is then that of A,-1 where r is their parameter). 

1.4. Temperley-Lieb-Jones ( T U )  algebra 

Consider two algebras d 5 93. There is a projector E,* from 93 to d defined by the 
property (Jones 1983) 

Tr E ( x ) y  =Tr(xy) VXE93, V y E d .  (9) 
E is the orthogonal and has the property 

E(axb)  = a E ( x ) b  for a, b E d. 
Applying this definition to d = 9 K , N ,  93 = 9K,N+I it is possible to build a projector 

e,+, of 9K,N+Zn 9 k . N  such that for X E  9K,N+I n 9 k , N  one has 

en+lxen+,= E(x)en+, (11) 
and whose expression is given by 

I.. . vn(+;+,vn.. .). (12) (S,,;+,Sm,, + I ) ”’ 
en+,[. . . g n C n + l g n + 2 . .  . )=S(V, r n + 2 ) / 3 - ’  C 

,,;+I-,,, %, 
The set of matrices so built obey the Temperley-Lieb (1971) relations together with 
the Jones trace condition: 

e: = e,, 

enenilen = P-’ en 
enem = emen for l n - m l s 2  

Tr en,en, . . , e,, = / 3 - 2 k  for n, > n2  > . . , > nk. 

We shall call it the TLJ algebra. This representation was independently obtained by 
Ocneanu (1986) in a different context and observed to occur in the RSOS models by 
Akutsu et a1 (1986). 
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1.5. Partition function 

Using the TLJ algebra, one can define a partition function 

Z = Tr( VW)m 

with 
V = . . .( 1 + x l e 2 H + l ) (  1 + xleZnc3). . . 
W = .  . .(x2+e2,)(xz+e,,,+,). . . . 

(15) 

This depends on two parameters x1 , x2. The model is self-dual on the line xlxz = 1 
(Baxter 1982). In what follows, we shall restrict ourselves to this line and take xI = p, 
X* = p - I .  

2. Critical exponents 

To compute the critical exponents of magnetic operators, we shall re-express the 
correlation function of these operators computed on the self-dual line in terms of the 
correlation functions which can be computed in the continuum limit. For this, we 
introduce the following models called BC-SOS models (van Beijeren 1977). Heights 
take integer values. Each site of the lattice is assigned an arbitrary height with the 
restriction that their values on neighbouring sites differ by *l. The equation analogous 
to (12) is 

e"+&.  . ( + n ( + n + 1 ( + n + 2 . .  .) = 6 ( m n ,  ( + " + 2 ) P -  I c ~ ( ~ , , + 1 + ~ , ~ + 1 - * ~ , , ) ~ * ~ .  . . (+n(+;+l(T,+* . . .), 

(16) 

z+ 2 - I  = p. (17) 

u,;+1 =U,, * I  

Z is a complex number such that 

Later, the value of 2 will be adjusted so that p is equal to the value appearing in (12). 
The equation analogous to (7) is 

(18) 
Given a Coxeter diagram (figure l) ,  let us define the following operators in $23": 

Tr puK ,v\ = p- 'N-K'"u~+' ' \ )  

where VE is an  eigenvector with eigenvalue A,,, = 2 cos( m r /  h )  of the incidence matrix. 
In the BC-SOS model, the corresponding expression for VE is either 2"'" or Z-"" so 
that q,,, becomes 

q L =  1 Z'm- ' )aPu ,=a  
a c k  

or 

The correlation function of several cp, is defined to be 

( @ m ( n , N , ) q m ( n , N * ) .  . .) 
= 2-' Tr{ UVU . . . q,( N , )  UV . . , cp,,,( N z ) .  . .}. 

n I terms nl-nlterms 
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n i - N i  is always even. The trace in (21) can be expanded as a sum of terms where 
each term can be represented as follows. In the elementary square of the lattice located 
at the ith row and j t h  column ( i  - j  is odd) one puts a vertical bar if the term 4 = pe, 
is picked up  in the matrix U or  V and a horizontal bar if 1 is picked up. The operator 
pm(n, N )  is represented by a cross at the site located at the nth row and  N t h  column. 
Thus the sites of the lattice are grouped into clusters, all sites of a cluster having the 
same height. These clusters can be separated by boundaries drawn on the dual lattice. 
For example, the quantity 

(22) t = Tr( &i?2i?,(pmt( 2)e', g4e'2C3350m ( 3)C33) 
with 

a (sbsc)l'z 
a s a  

h, = pet = bOc  = 

is represented in figure 4. 
This graphical representation can be further simplified (figure 5). Each cluster of 

sites is represented by a point and points representing clusters with a common boundary 
are joined by a line. With each cluster are represented the index of operators pm which 
it contains. The contribution of such a graph to the trace is a sum of terms, one for 
each allowed assignment of height at points of the graph. The contribution of a height 
configuration is a product of terms, one for each cluster. Using the expression (23) 
of Zi ,  the factor for each cluster of height a is S:+-b- with b, ( b - )  the number of 
boundaries surrounding (surrounded by) the cluster multiplied by the factors V:/Sa 
of the operators pm in the cluster. The clusters containing all the points in the upper 
(lower) row take an additional factor S a  coming from definition (7) of the trace. If 
there are several operators pm in a cluster, the product of terms v ; / S a  can be expanded 
on the base u a / S a  and we can restrict ourselves to the case where there is at most one 
pm by cluster. It gives the following rules for computing the trace. Links with one 
free end in figure 5 are successively removed using the rule 

m" 

with Cz,, given by 

L e v e l  

0 

1 

2 

3 

4 

5 

6 

a a a a 

Figure4. A cluster decomposition corresponding to f in formula (22) .  
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Figure 5. The graph corresponding to the cluster decomposition of figure 4 

V, is normalised so that C;, = S,, . When there is only one point left, the trace is 
obtained by multiplying the coefficient of m = 1 by /TN where N + 1 is the number 
of rows of the lattice. In the example we are considering it gives 

(26) 

The correlation function of the @, operator therefore depends on the eigenvalues 
A, of the incidence matrix and on the coefficients C:,. If there are only two operators 
cp,, p , ,  there is only one coefficient C",, = S,, . Thus, the correlation function 
(cp,, cp,) is the same evaluated in the BC-SOS model provided we adjust p, A,, A, to 
be equal to the values of the original model. A non-zero result is obtained if we take 
one cp, of each type in formula (20). 

Under renormalisation, the BC-SOS model is expected to flow to a Coulomb gas 
(den Nijs 1983, Nienhuis 1984) with coupling constant g = 4(1- 1/ h ) .  In a modified 
version of the models where vacancies are allowed (Nienhuis et a1 1979) another value 
of g, g ' = 4 ( 1  + l / h ) ,  can be reached. In this version, c p h - l  =(-1)"1 is promoted from 
being a c number to an operator. In  the renormalised model, c p l ( n ,  N )  becomes an 
electric operator that creates a charge q ,  = ( m  - 1)2/h at point (n, N )  of the lattice 
and cp',( n, N )  creates a charge q2 = ( - m  - 1)2/ h. Flectric neutrality is preserved 
because definition (7) of the trace introduces a charge 4/h at infinity (den Nijs 1984, 
Dotsenko and Fateev 1984). The correlation function (cp!,,(x)cp',(x+ r ) )  therefore 
behaves as 

5 3  t = p -  A,S,, . 

in the model without vacancies 
in the model with vacancies 

r ( m ' - l I  h ( h - I )  

r l m ' - l )  h l h t l l  (27) { + Y , Y , I / a  = 

which yields 

X, = m 2 -  1/2h(h - 1 )  or x, = m 2 - 1 / 2 h ( h + l ) .  (28) 

In the A, case, these scaling dimensions had been derived by Huse (1984) from the 
exact solution of Andrews et al. In  the three-state Potts model (D,) case they had 
been obtained by den Nijs (1983) using a similar method. 

3. Bimodule decomposition and fusion rules 

In  this section, we shall make some connection between the lattice operator algebra 
and the operator algebra in conformal theories. In  particular we shall show that it is 
consistent to identify the TLJ algebra with the algebra of thermal operators. The total 
algebra then decomposes into bimodules with product rules that agree with the fusion 
rules of Belavin et a1 (1984) ( BPZ).  

In conformal theories, the operator algebra splits into representations of the left 
and right Virasoro algebras (Belavin er a1 1984). They are labelled by two pairs of 
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two integers [ r, s]  and [ F, $1, 1 6 r, i s  h - 1,1 -s s, F s  h ( h  is an  integer that characterises 
the theory) with [ r, s] = [ h - r - h - s ]  and similarly for F, F. The product of operators 
in two different representations obey fusion rules which are basically the rules for 
multiplying representations of SU(2): 

[ r, SI[ r', s'] = 0 [ r", s"] 
r - , I + l S r  s l r + r + l  

l , - i l + l = \  q - , l - l  

and 

and similarly for 7, S. 
These rules indicate that the set of operators s = 5 =  1, r, T odd, form an algebra: 

the thermal operator algebra. The total algebra considered as a vector space decom- 
poses into modules over this algebra now labelled by s and i: 

(s, S I = @  [ r ,  SI[?, SI 

r - s = O  mod 2 (30) 

r. i 

F - S = O  mod 2. 

The term 'module' simply means that (s, 5) is stable by multiplication with operators 
in the algebra (1, 1). 

In the lattice models, it is natural to identify (1, 1) with the TLJ algebra. Let us 
now build molecules [ m ]  where m is an exponent of E, .  

Consider operators obtained by taking linear combinations of c p m (  N )  at any level 
N multiplied left o r  right by any possible polynomial in e, .  One such operator is, for 
example, 

e3cpm ( 1 )e4e5 + ebe5cpm (5 )e6  + cpm (9 I .  (31) 

Let [ m ]  denote this set. It is by construction a module over [ 13 of the TLJ algebra. 
For the scalar product defined by (xJy) = Tr x*y,  any operator in [ m ]  is orthogonal to 
any operator in [m'] for m f m'.  It is sufficient for that to compute Tr(cpm(0)wcpm, 
( n ) w ' )  with w and w' two monomials in e , .  Using the graphical method explained in 
§ 2 one sees that the result is always proportional to VGVL,  which is null for m # m' 
since {V,} is an orthogonal base. This in particular shows that ( c p m c p m . )  correlation 
functions of cpm and cpmr vanish if m f m'. 9 can therefore be decomposed into 

9 = @ [m]O(other modules). 
m 6 exponents 

To fully convince oneself that [ m ]  can be identified with ( m ,  f i )  in formula (30) 
one needs to verify that the BPZ fusion rules are satisfied, namely 

[ m"] 0 (other modules) 8 
Im - m'(+ 1 % m"l- Im +"I- 1 

[ml[mlI  = 

mod 2 (33) m"- m - 1 = 0 

m"-m ' -1=0  mod 2. 
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The first line of the above equality is verified if 

Tr( qm( N )  wqm,(  N ' )  w ' q , . . ~ ' ' )  (34) 

vanishes for w, w', w" arbitrary monomial in e ,  and m" not among the above values. 
The result is always proportional to 

We therefore need to decompose the vector W" = Z, Vk Vk,/S" on the base { V,,,,} and 
observe that the only values of m" that occur are among those of formula (33). In the 
A,, case, for example, 

m r a  
U: =sin - 

n + l  

c -- v;uv",. - sin ( E)  sin (e) [sin (=)]-I = 
S a  n + l  n + l  n + l  1 m '- m/+  1 s m " s  /m  '+ m 1 - 1 

m " - m ' - m - l = O  mod 2 .  

This remains true for all Dynkin diagrams. 

3.1. Non-scalar operators in the Potts model case 

The question immediately arises: is the decomposition complete or are there other 
modules? Although we did not prove it, there are very likely not to be other modules 
for the A,, (RSOS) models but, as we shall now see in the case of D4,  there may be for 
the other Dynkin diagrams. 

In the D, (Potts model) case, i t  is easy to build projectors that project on each 
module of the decomposition. Denote by 0 '0 -2  the three external nodes of D 4 .  An 
outer action of Z 2  x 2, on 9 can be obtained as follows. Let T and G be the operators 
that exchange 0', 0- and cyclically permute 0'0-2 at every level of a path. For 
x E 9 define 

( P ~ ( x )  = TXT-' Q:= 1 

( P ~ ( x )  = GxG-' (P3,=1 
(37) 

{ ( P ~ ,  pG} determine an outer action of Z , 0 H 3  on 9 and [ l ]  can be characterised as 
the subalgebra of operators that remain unchanged by this action. We can now define 
the following projectors: 

P r I , = [ ~ ( 1 + ( p G + ( p Z G ) 1 [ ~ ( 1 + ( P T ) I  

As indicated Prll projects on the [ l ]  algebra, Pr3i1 on the [3+] module obtained 
with q3+ = 2P2 - Po - P,+(P,,-~ on the [ 3 - ]  module obtained with q3- = Po+ - Po-. Pral 
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Table 1. List of known partition functions in terms of A:" characters. 

k 3  1 

A f 2 p + l  
2 p - I  

2 ( / X A  + X 4 p + 2 - A 1 2 + 2 / X 2 p + l / 2 )  
A odd= I 

4p-1 2p-2 

k = 4 p - 2 ,  p a 2  ( I X A I ~ + I X Z P I ' ) +  C ( X A X $ ~ - A + C C )  DZP+l 

1x1 +A2 + 1x4 + XaI2 + 1x5 + X I  I I 2  €6 

k + 2 = 1 8  /XI  +XI7 l2+ /XS+X1312+ IX7+XII12+ Ix9l2 E ,  
+ [ ( . Y 3 + X I S ) X 9 * + ~ C l  

/ X I  + X I  I + XI9+X29l2 + 1x7 +XI3 + XI7 + X2312 €8 

A odd= I A e \ e n = 2  

k + 2 = 1 2  

k + 2 = 3 0  

does not project on any previously built module. [A] would in fact have been obtained 
by repeating the above construction with 

(39) 

where Po+o- stands for Pv,=o+, v h + 2 = 2 . .  . . 
In the case of an arbitrary Dynkin diagram the module decomposition can be 

deduced from the analyses of modular invariant partition functions (Cappelli er a1 
1986). But various partition functions are listed in table 1; each term X,XT in the 
partition function corresponds to a module (s, S). In the D4 case, for example, the 
partition function is (Cardy 1986) 

cpa( N )  = Po'o- + Po-2 + P20+ - Po-()+ - P20- - Po'2 

2 = X , X T  + 2x3x,* + X , X T  + XsXT + XSXT. (40) 

We have the module decomposition 

9+ = [ 1 1 0  [ 3'1 0 [3-]O [ 51 0 [A]. 

It is therefore consistent to identify 

[51@[11=(1,1)+(5,5) 

[3'] = (3,3)+ 

[3-] = (3,3)- 

[AI = (1 ,5)0(5 ,1) .  

(41) 

pa should therefore be the chiral operator (den Nijs 1984). 
In the case of other Dynkin diagrams, we have not yet been able to recover modules 

(s, S) with JZ s. In the general case, we conjecture that the complete decomposition 
of the lattice algebra 9 considered as a module over the TLJ algebra coincides with 
the decomposition that can be derived from the partition functions in table 1. 
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