Operator content of the ADE lattice models

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1987 J. Phys. A: Math. Gen. 205707
(http://iopscience.iop.org/0305-4470/20/16/043)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 16:24

Please note that terms and conditions apply.

Operator content of the $A D E$ lattice models

Vincent Pasquier
Service de Physique Théorique, CEN-Saclay, 91191 Gif-sur-Yvette Cedex, France

Received 16 February 1987

Abstract

We compute the scaling dimensions of order parameters in the $A D E$ lattice models. Some connection is made between the lattice algebra and the operator algebra in conformal invariant theories.

1. Introduction

In a recent work (Pasquier 1987a) the author defined lattice statistical models which led him to conjecture a classification for unitary conformal theories with a central charge smaller than or equal to one (Friedan et al 1984). In these models it was not difficult to guess the expression of order parameters generalising results previously obtained by Andrews et al (1984) and Huse (1984) in the restricted solid-on-solid (rsos) model case. It remained to compute their critical exponents which is the aim of this paper. To obtain them, we re-express the two-point correlation function of magnetic operators in terms of correlation functions which can be evaluated in the continuum limit. This method generalises to these models the one used by den Nijs (1983) to compute the magnetic exponents of the Potts model.

In § 1 we describe the models and introduce the basic techniques required to study them. In § 2 we compute the critical exponents and identify the order parameters. In § 3 we make a connection between the operator algebra of lattice models and the operator algebra in conformal theories. This enables us to conjecture about the lattice models.

1.1. The models

The models are characterised by a square lattice on a cylinder and a Coxeter diagram (figure 1). The square lattice rotated by 45° has N rows and M columns (figure 2). The rows are numbered from 0 to N. Similarly, the columns are numbered from 0 to $M-1$, the column numbered M being identical with that numbered 0 . Each point of the Coxeter diagram has a height marked on it. Each site of the lattice is assigned an arbitrary height with the restriction that two heights on neighbouring sites are also heights on neighbouring points of the Coxeter diagram. Each assignment of heights induces a decomposition of the lattice into two interpenetrating (even and odd) sublattices such that all heights of a given sublattice have the same parity.

In a transfer matrix approach we define the Hilbert space on which operators act: consider a column of the lattice as in figure 3 and label the sites by i (i will sometimes be called the level). A base for states will be a set of heights $|\sigma\rangle=$ $\left|\ldots \sigma_{-K} \sigma_{-K+1} \ldots \sigma_{N} \ldots\right\rangle$ such that the two successive heights are constrained to be

Figure 1. The Coxeter diagram.

Figure 2. The square lattice.
linked on the Coxeter diagram (figure 1). It can also be viewed as an infinitely long path on the diagram (figure 1). Far from the origin, paths are assumed to obey certain periodicity conditions characterising the vacuum.

1.2. Operator algebra

We define $\mathscr{D}_{K N}$ as the algebra of matrices which act on heights $\sigma_{1}, K \leqslant \sigma_{1} \leqslant N$ and let σ_{K}, σ_{N} remain unchanged:
$d\left|\ldots \sigma_{K} \sigma_{K+1} \ldots \sigma_{N} \ldots\right\rangle$

$$
\begin{equation*}
=\sum_{\sigma_{\dot{K}+1} \ldots \sigma_{N-1}} d_{\sigma_{K} \sigma_{K+1} \ldots \sigma_{N}, \sigma_{K} \sigma_{\dot{K}+1} \ldots \sigma_{\dot{N}-1} \sigma_{N} \mid \ldots \sigma_{K} \sigma_{\dot{K}+1} \ldots \sigma_{N} \ldots \dot{\prime} .} \tag{1}
\end{equation*}
$$

Figure 3. A column of the lattice \tilde{e}_{5} is represented at level 5 . It induces a bar between σ_{4} and σ_{6}.

A base of $\mathscr{D}_{K N}$ (as was first discussed by Ocneanu (1986)) can be built as follows. Consider two paths α, β of length n going from identical heights at level K and ending at identical heights at level N. Define an operator $f_{\alpha \beta}$ in $\mathscr{I}_{K N}$:

$$
\begin{align*}
& f_{\alpha \beta}|\beta\rangle=|\alpha\rangle \tag{2}\\
& f_{\alpha \beta}|\gamma\rangle=0 \quad \text { if } \quad \gamma \neq \beta .
\end{align*}
$$

Clearly the set $\left\{f_{\alpha \beta}\right\}$ indexed by paths starting and ending at the same height makes a base of $\mathscr{D}_{K N}$.

The total operator algebra is the reunion of all $\mathscr{D}_{K N}$

$$
\begin{equation*}
\mathscr{D}=\overline{U \mathscr{D}_{K N}} \tag{3}
\end{equation*}
$$

It can be convenient to define $\mathscr{D}_{K N}$ as the set of matrices that commute with $\mathscr{D}_{-\infty K}$ and $\mathscr{D}_{N+\infty}$

$$
\begin{equation*}
\mathscr{D}_{K N}=\mathscr{D}_{-\infty K}^{\prime} \cap \mathscr{D}_{N+\infty}^{\prime} \tag{4}
\end{equation*}
$$

where \mathscr{D}^{\prime} means the commutant of \mathscr{D}. \mathscr{D} naturally splits into two components:

$$
\begin{equation*}
\mathscr{D}=\mathscr{D}^{+} \oplus \mathscr{D}^{-} \tag{5}
\end{equation*}
$$

where \mathscr{D}^{+}acts only on paths such that $\sigma_{i}-i$ is even and \mathscr{D}^{-}on paths such that $\sigma_{i}-i$ is odd.

1.3. Trace

In an earlier paper (Pasquier 1987a) we defined the trace of a projector as the dimension of its image space divided by the dimension of the total Hilbert space in the infinite lattice limit. The result can be described as follows (this trace was also considered by Ocneanu (1986)).

To the diagram of figure 1 attach its incidence matrix C acting on vector components labelled by heights on the diagram v_{j}

$$
\left(\begin{array}{ll}
C & v \tag{6}
\end{array}\right)_{i}=\sum_{j \sim i} v_{j}
$$

where $\Sigma_{j \sim i}$ means that the summation is on all points j neighbouring i on the diagram. Let S_{i} be the vector with the largest eigenvalue β of C; all components of S_{i} are positive by the Perron-Frobenius theorem. Normalise S_{i} such that

$$
\sum_{i} S_{i}^{2}=1 \quad \text { if } \quad P_{\sigma_{K} \ldots \sigma_{N}}
$$

is the projector of $\mathscr{D}_{K N}$ defined by
$P_{\sigma_{K} \ldots \sigma_{N}}\left|\ldots \sigma_{K} \sigma_{K+1} \ldots \sigma_{N} \ldots\right\rangle=\left|\ldots \sigma_{K} \sigma_{K+1} \ldots \sigma_{N} \ldots\right\rangle=0 \quad$ on any other path.
Then

$$
\begin{equation*}
\operatorname{Tr} P_{\sigma_{K} \ldots \sigma_{N}}=\beta^{-(N-K)} S_{K} S_{N} \tag{8}
\end{equation*}
$$

Since

$$
P_{\sigma_{K} \ldots \sigma_{N}}=\sum_{\sigma_{N+1} \sim \sigma_{N}} P_{\sigma_{K} \ldots \sigma_{N} \sigma_{N+1}}
$$

both projectors should have the same trace which results from

$$
\sum_{\sigma_{N+1} \sim \sigma_{N}} S_{\sigma_{N+1}}=\beta S_{\sigma_{N}}
$$

$\operatorname{Tr} \mathbb{D}=1$ due to the normalisation of S_{1}.
The physical interpretation of this trace is clarified by noting that $\operatorname{Tr} P_{\sigma_{K}}$ is the expectation value $\left\langle P_{\sigma_{K}}\right\rangle$ computed by Andrews et al (1984) at the critical point in the RSOS models (the diagram in figure 1 is then that of A_{r-1} where r is their parameter).

1.4. Temperley-Lieb-Jones (TLJ) algebra

Consider two algebras $\mathscr{A} \subseteq \mathscr{B}$. There is a projector $E_{\mathscr{A}}$ from \mathscr{B} to \mathscr{A} defined by the property (Jones 1983)

$$
\begin{equation*}
\operatorname{Tr} E(x) y=\operatorname{Tr}(x y) \quad \forall x \in \mathscr{B}, \forall y \in \mathscr{A} \tag{9}
\end{equation*}
$$

E is the orthogonal and has the property

$$
\begin{equation*}
E(a x b)=a E(x) b \quad \text { for } \quad a, b \in \mathscr{A} . \tag{10}
\end{equation*}
$$

Applying this definition to $\mathscr{A}=\mathscr{D}_{K, N}, \mathscr{B}=\mathscr{D}_{K, N+1}$ it is possible to build a projector e_{n+1} of $\mathscr{D}_{K, N+2} \cap \mathscr{D}_{K, N}^{\prime}$ such that for $x \in \mathscr{D}_{K, N+1} \cap \mathscr{D}_{K, N}^{\prime}$ one has

$$
\begin{equation*}
e_{n+1} x e_{n+1}=E(x) e_{n+1} \tag{11}
\end{equation*}
$$

and whose expression is given by
$e_{n+1}\left|\ldots \sigma_{n} \sigma_{n+1} \sigma_{n+2} \ldots\right\rangle=\delta\left(\sigma, \sigma_{n+2}\right) \beta^{-1} \sum_{\sigma_{n+1}^{\prime \sim} \sigma_{n}} \frac{\left(S_{\sigma_{n+1}} S_{\sigma_{n+1}}\right)^{1 / 2}}{S_{\sigma_{n}}}\left|\ldots \sigma_{n} \sigma_{n+1}^{\prime} \sigma_{n} \ldots\right\rangle$.
The set of matrices so built obey the Temperley-Lieb (1971) relations together with the Jones trace condition:

$$
\begin{align*}
& e_{n}^{2}=e_{n} \\
& e_{n} e_{n \pm 1} e_{n}=\beta^{-2} e_{n} \tag{13}\\
& e_{n} e_{m}=e_{m} e_{n} \quad \text { for }|n-m| \geqslant 2 \\
& \operatorname{Tr} e_{n_{1}} e_{n_{2}} \ldots e_{n_{k}}=\beta^{-2 k} \quad \text { for } n_{1}>n_{2}>\ldots>n_{k} .
\end{align*}
$$

We shall call it the tLJ algebra. This representation was independently obtained by Ocneanu (1986) in a different context and observed to occur in the rSos models by Akutsu et al (1986).

1.5. Partition function

Using the tlJ algebra, one can define a partition function

$$
\begin{equation*}
Z=\operatorname{Tr}(V W)^{m} \tag{14}
\end{equation*}
$$

with

$$
\begin{align*}
& V=\ldots\left(1+x_{1} e_{2 n+1}\right)\left(1+x_{1} e_{2 n+3}\right) \ldots \\
& W=\ldots\left(x_{2}+e_{2 n}\right)\left(x_{2}+e_{2 n+2}\right) \ldots \tag{15}
\end{align*}
$$

This depends on two parameters x_{1}, x_{2}. The model is self-dual on the line $x_{1} x_{2}=1$ (Baxter 1982). In what follows, we shall restrict ourselves to this line and take $x_{1}=\beta$, $x_{2}=\beta^{-1}$.

2. Critical exponents

To compute the critical exponents of magnetic operators, we shall re-express the correlation function of these operators computed on the self-dual line in terms of the correlation functions which can be computed in the continuum limit. For this, we introduce the following models called BC-sos models (van Beijeren 1977). Heights take integer values. Each site of the lattice is assigned an arbitrary height with the restriction that their values on neighbouring sites differ by ± 1. The equation analogous to (12) is

$$
\begin{equation*}
\left.e_{n+1}\left|\ldots \sigma_{n} \sigma_{n+1} \sigma_{n+2} \ldots\right\rangle=\delta\left(\sigma_{n}, \sigma_{n+2}\right) \beta^{-1} \sum_{\sigma_{n+1}^{\prime}=\sigma_{n+1}} Z^{\left(\sigma_{n+1}+\sigma_{n+1}^{\prime}-2 \sigma_{n}\right) / 2} \ldots \sigma_{n} \sigma_{n+1}^{\prime} \sigma_{n+2} \ldots\right\rangle \tag{16}
\end{equation*}
$$

Z is a complex number such that

$$
\begin{equation*}
Z+Z^{-1}=\beta \tag{17}
\end{equation*}
$$

Later, the value of Z will be adjusted so that β is equal to the value appearing in (12). The equation analogous to (7) is

$$
\begin{equation*}
\operatorname{Tr} P_{\sigma_{K} \ldots \sigma_{N}}=\beta^{-(N-K)} Z^{\left(\sigma_{K}+\sigma_{v}\right)} \tag{18}
\end{equation*}
$$

Given a Coxeter diagram (figure 1), let us define the following operators in $\mathscr{D}_{N N}$:

$$
\begin{equation*}
\varphi_{m}(N)=\sum_{a} V_{m}^{a} \frac{P_{\sigma_{N}=a}}{S^{a}} \tag{19}
\end{equation*}
$$

where V_{m}^{a} is an eigenvector with eigenvalue $\lambda_{m}=2 \cos (m \pi / h)$ of the incidence matrix. In the BC -sos model, the corresponding expression for V_{m}^{a} is either $Z^{m a}$ or $Z^{-m a}$ so that φ_{m} becomes

$$
\varphi_{m}^{\prime}=\sum_{a \in \mathbb{Z}} Z^{(m-1) a} P_{\sigma_{v}=a}
$$

or

$$
\begin{equation*}
\varphi_{m}^{2}=\sum_{a \in \mathbb{Z}} Z^{(-m-1) a} P_{\sigma_{N}=a} \tag{20}
\end{equation*}
$$

The correlation function of several φ_{m} is defined to be

$$
\begin{align*}
& \left\langle\Phi_{m}\left(n_{1} N_{1}\right) \varphi_{m}\left(n_{2} N_{2}\right) \ldots\right\rangle \\
& \quad=Z^{-1} \operatorname{Tr}\left\{U V U_{n_{1} \text { terms }} \varphi_{m}\left(N_{1}\right) U V_{n_{2}-n_{1} \text { terms }} \varphi_{m}\left(N_{2}\right) \ldots\right\} \tag{21}
\end{align*}
$$

$n_{i}-N_{i}$ is always even. The trace in (21) can be expanded as a sum of terms where each term can be represented as follows. In the elementary square of the lattice located at the i th row and j th column ($i-j$ is odd) one puts a vertical bar if the term $\tilde{e}_{j}=\beta e_{j}$ is picked up in the matrix U or V and a horizontal bar if 1 is picked up. The operator $\varphi_{m}(n, N)$ is represented by a cross at the site located at the nth row and N th column. Thus the sites of the lattice are grouped into clusters, all sites of a cluster having the same height. These clusters can be separated by boundaries drawn on the dual lattice. For example, the quantity

$$
\begin{equation*}
t=\operatorname{Tr}\left(\tilde{e}_{4} \tilde{e}_{2} \tilde{e}_{5} \varphi_{m} \cdot(2) \tilde{e}_{1} \tilde{e}_{4} \tilde{e}_{2} \tilde{e}_{3} \varphi_{m}(3) \tilde{e}_{3}\right) \tag{22}
\end{equation*}
$$

with

$$
\begin{equation*}
\tilde{e}_{1}=\beta e_{i}=\underset{\mathrm{a}}{\mathrm{~b} \diamond \mathrm{c}} \underset{\mathrm{a}}{\mathrm{a}}=\frac{\left(S_{\mathrm{b}} S_{\mathrm{c}}\right)^{1 / 2}}{S_{\mathrm{a}}} \tag{23}
\end{equation*}
$$

is represented in figure 4.
This graphical representation can be further simplified (figure 5). Each cluster of sites is represented by a point and points representing clusters with a common boundary are joined by a line. With each cluster are represented the index of operators φ_{m} which it contains. The contribution of such a graph to the trace is a sum of terms, one for each allowed assignment of height at points of the graph. The contribution of a height configuration is a product of terms, one for each cluster. Using the expression (23) of \tilde{e}_{i}, the factor for each cluster of height a is $S_{a}^{b_{+}^{-b}}$ with $b_{+}\left(b_{-}\right)$the number of boundaries surrounding (surrounded by) the cluster multiplied by the factors V_{m}^{a} / S^{a} of the operators φ_{m} in the cluster. The clusters containing all the points in the upper (lower) row take an additional factor S^{a} coming from definition (7) of the trace. If there are several operators φ_{m} in a cluster, the product of terms v_{m}^{a} / S^{a} can be expanded on the base v^{a} / S^{a} and we can restrict ourselves to the case where there is at most one φ_{m} by cluster. It gives the following rules for computing the trace. Links with one free end in figure 5 are successively removed using the rule

$$
\begin{equation*}
\ldots \stackrel{\alpha, m}{\beta, m^{\prime}} \rightarrow \lambda_{m} \quad \sum_{m^{\prime \prime}} C_{m m}^{m^{\prime \prime}} \ldots \alpha_{m^{\prime \prime}} \tag{24}
\end{equation*}
$$

with $C_{m m}^{m^{\prime \prime}}$ given by

$$
\begin{equation*}
\frac{V_{m}^{a} V_{m^{\prime}}^{a}}{S^{a}}=\sum_{m^{\prime \prime}} C_{m m^{\prime}}^{m^{\prime \prime}} V_{m^{\prime \prime}}^{a} \tag{25}
\end{equation*}
$$

Figure 4. A cluster decomposition corresponding to t in formula (22).

Figure 5. The graph corresponding to the cluster decomposition of figure 4.
V_{m} is normalised so that $C_{m m^{\prime}}^{0}=\delta_{m m^{\prime}}$. When there is only one point left, the trace is obtained by multiplying the coefficient of $m=1$ by β^{-N} where $N+1$ is the number of rows of the lattice. In the example we are considering it gives

$$
\begin{equation*}
t=\beta^{-5} \lambda_{m}^{3} \delta_{m m} \tag{26}
\end{equation*}
$$

The correlation function of the Φ_{m} operator therefore depends on the eigenvalues λ_{m} of the incidence matrix and on the coefficients $C_{m m^{\prime}}^{m^{\prime \prime}}$. If there are only two operators $\varphi_{m}, \varphi_{m^{\prime}}$, there is only one coefficient $C_{m m^{\prime}}^{0}=\delta_{m m^{\prime}}$. Thus, the correlation function $\left\langle\varphi_{m}, \varphi_{m}\right\rangle$ is the same evaluated in the BC -sos model provided we adjust $\beta, \lambda_{m}, \lambda_{m}$ to be equal to the values of the original model. A non-zero result is obtained if we take one φ_{m} of each type in formula (20).

Under renormalisation, the bc-sos model is expected to flow to a Coulomb gas (den Nijs 1983, Nienhuis 1984) with coupling constant $g=4(1-1 / h)$. In a modified version of the models where vacancies are allowed (Nienhuis et al 1979) another value of $g, g^{\prime}=4(1+1 / h)$, can be reached. In this version, $\varphi_{h-1}=(-1)^{\sigma_{I}}$ is promoted from being a c number to an operator. In the renormalised model, $\varphi_{m}^{1}(n, N)$ becomes an electric operator that creates a charge $q_{1}=(m-1) 2 / h$ at point (n, N) of the lattice and $\varphi_{m}^{2}(n, N)$ creates a charge $q_{2}=(-m-1) 2 / h$. Electric neutrality is preserved because definition (7) of the trace introduces a charge 4/h at infinity (den Nijs 1984, Dotsenko and Fateev 1984). The correlation function $\left\langle\varphi_{m}^{1}(\boldsymbol{x}) \varphi_{m}^{2}(\boldsymbol{x}+\boldsymbol{r})\right\rangle$ therefore behaves as

$$
r^{\left(q_{1} q_{2}\right) / g}= \begin{cases}r^{\left(m^{2}-1\right) / h(h-1)} & \text { in the model without vacancies } \tag{27}\\ r^{\left(m^{2}-1\right) / h(h+1)} & \text { in the model with vacancies }\end{cases}
$$

which yields

$$
\begin{equation*}
x_{m}=m^{2}-1 / 2 h(h-1) \quad \text { or } \quad x_{m}=m^{2}-1 / 2 h(h+1) \tag{28}
\end{equation*}
$$

In the A_{n} case, these scaling dimensions had been derived by Huse (1984) from the exact solution of Andrews et al. In the three-state Potts model (D_{4}) case they had been obtained by den Nijs (1983) using a similar method.

3. Bimodule decomposition and fusion rules

In this section, we shall make some connection between the lattice operator algebra and the operator algebra in conformal theories. In particular we shall show that it is consistent to identify the TLJ algebra with the algebra of thermal operators. The total algebra then decomposes into bimodules with product rules that agree with the fusion rules of Belavin et al (1984) (BPZ).

In conformal theories, the operator algebra splits into representations of the left and right Virasoro algebras (Belavin et al 1984). They are labelled by two pairs of
two integers $[r, s]$ and $[\bar{r}, \bar{s}], 1 \leqslant r, \bar{r} \leqslant h-1,1 \leqslant s, \bar{s} \leqslant h$ (h is an integer that characterises the theory) with $[r, s]=[h-r-h-s]$ and similarly for \bar{r}, \bar{s}. The product of operators in two different representations obey fusion rules which are basically the rules for multiplying representations of $\mathrm{SU}(2)$:

$$
\begin{equation*}
[r, s]\left[r^{\prime}, s^{\prime}\right]=\bigoplus_{\substack{\left|r-r^{\prime}\right|+1 \leqslant r^{\prime} \leqslant\left|r+r^{\prime}\right|-1 \\\left|s-s^{\prime}\right|+1=s, s|s-s|-1}}\left[r^{\prime \prime}, s^{\prime \prime}\right] \tag{29}
\end{equation*}
$$

and

$$
\begin{array}{ll}
r^{\prime \prime}=r-r^{\prime}-1 & \bmod 2 \\
s^{\prime \prime}=s-s^{\prime}-1 & \bmod 2
\end{array}
$$

and similarly for \bar{r}, \bar{s}.
These rules indicate that the set of operators $s=\bar{s}=1, r, \bar{r}$ odd, form an algebra: the thermal operator algebra. The total algebra considered as a vector space decomposes into modules over this algebra now labelled by s and \bar{s} :

$$
\begin{array}{ll}
(s, \bar{s})=\bigoplus_{r, \bar{r}}[r, s][\bar{r}, \bar{s}] \\
r-s=0 & \bmod 2 \tag{30}\\
\bar{r}-\bar{s}=0 & \bmod 2 .
\end{array}
$$

The term 'module' simply means that (s, \bar{s}) is stable by multiplication with operators in the algebra (1,1).

In the lattice models, it is natural to identify $(1,1)$ with the tLJ algebra. Let us now build molecules [m] where m is an exponent of E_{6}.

Consider operators obtained by taking linear combinations of $\varphi_{m}(N)$ at any level N multiplied left or right by any possible polynomial in e_{n}. One such operator is, for example,

$$
\begin{equation*}
e_{3} \varphi_{m}(1) e_{4} e_{5}+e_{6} e_{5} \varphi_{m}(5) e_{6}+\varphi_{m}(9) \tag{31}
\end{equation*}
$$

Let [m] denote this set. It is by construction a module over [1] of the TLJ algebra. For the scalar product defined by $\langle x \mid y\rangle=\operatorname{Tr} x^{*} y$, any operator in [m] is orthogonal to any operator in [m^{\prime}] for $m \neq m^{\prime}$. It is sufficient for that to compute $\operatorname{Tr}\left(\varphi_{m}(0) w \varphi_{m}\right.$, $\left.(n) w^{\prime}\right)$ with w and w^{\prime} two monomials in e_{1}. Using the graphical method explained in $\S 2$ one sees that the result is always proportional to $V_{m}^{a} V_{m}^{a}$, which is null for $m \neq m^{\prime}$ since $\left\{V_{m}\right\}$ is an orthogonal base. This in particular shows that $\left\langle\varphi_{m} \varphi_{m}\right\rangle$ correlation functions of φ_{m} and $\varphi_{m^{\prime}}$ vanish if $m \neq m^{\prime} . \mathscr{D}$ can therefore be decomposed into

$$
\begin{equation*}
\mathscr{D}=\bigoplus_{m \in \text { exponents }}[m] \oplus(\text { other modules }) \tag{32}
\end{equation*}
$$

To fully convince oneself that [m] can be identified with (m, \bar{m}) in formula (30) one needs to verify that the BPZ fusion rules are satisfied, namely

$$
\begin{align*}
& {[m]\left[m^{\prime}\right]=\bigoplus_{\left|m-m^{\prime}\right|+1 \leqslant m^{\prime \prime} \leqslant\left|m+m^{\prime \prime}\right|-1}\left[m^{\prime \prime}\right] \oplus(\text { other modules })} \\
& m^{\prime \prime}-m-1=0 \quad \bmod 2 \tag{33}\\
& m^{\prime \prime}-m^{\prime}-1=0 \quad \bmod 2 .
\end{align*}
$$

The first line of the above equality is verified if

$$
\begin{equation*}
\operatorname{Tr}\left(\varphi_{m}(N) w \varphi_{m}\left(N^{\prime}\right) w^{\prime} \varphi_{m^{\prime \prime}} w^{\prime \prime}\right) \tag{34}
\end{equation*}
$$

vanishes for $w, w^{\prime}, w^{\prime \prime}$ arbitrary monomial in e_{1} and $m^{\prime \prime}$ not among the above values. The result is always proportional to

$$
\begin{equation*}
\sum_{a} \frac{V_{m}^{a} V_{m}^{a} \cdot V_{m}^{a}}{S^{a}} \tag{35}
\end{equation*}
$$

We therefore need to decompose the vector $W^{a}=\Sigma_{a} V_{m}^{a} V_{m^{\prime}}^{a} / S^{a}$ on the base $\left\{V_{m}\right\}$ and observe that the only values of $m^{\prime \prime}$ that occur are among those of formula (33). In the A_{n} case, for example,

$$
\begin{align*}
& v_{m}^{a}=\sin \frac{m \pi a}{n+1} \\
& \frac{v_{m}^{a} v_{m^{\prime}}^{a}}{S^{a}}=\sin \left(\frac{m \pi a}{n+1}\right) \sin \left(\frac{m^{\prime} \pi a}{n+1}\right)\left[\sin \left(\frac{\pi a}{n+1}\right)\right]^{-1}=\sum_{\left|m^{\prime}-m\right|+1 \leqslant m^{\prime \prime} \leqslant\left|m^{\prime}+m\right|-1} \sin \left(\frac{m^{\prime \prime} \pi a}{n+1}\right) \tag{36}
\end{align*}
$$

$$
m^{\prime \prime}-m^{\prime}-m-1=0 \quad \bmod 2
$$

This remains true for all Dynkin diagrams.

3.1. Non-scalar operators in the Potts model case

The question immediately arises: is the decomposition complete or are there other modules? Although we did not prove it, there are very likely not to be other modules for the A_{n} (RSOS) models but, as we shall now see in the case of D_{4}, there may be for the other Dynkin diagrams.

In the D_{4} (Potts model) case, it is easy to build projectors that project on each module of the decomposition. Denote by $\mathrm{O}^{+} \mathrm{O}^{-} 2$ the three external nodes of D_{4}. An outer action of $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$ on \mathscr{D} can be obtained as follows. Let T and G be the operators that exchange $\mathrm{O}^{+}, \mathrm{O}^{-}$and cyclically permute $\mathrm{O}^{+} \mathrm{O}^{-} 2$ at every level of a path. For $x \in \mathscr{D}$ define

$$
\begin{array}{ll}
\varphi_{T}(x)=T x T^{-1} & \varphi_{T}^{2}=1 \\
\varphi_{G}(x)=G x G^{-1} & \varphi_{G}^{3}=1 \tag{37}
\end{array}
$$

$\left\{\varphi_{T}, \varphi_{G}\right\}$ determine an outer action of $\mathbb{Z}_{2} \otimes \mathbb{Z}_{3}$ on \mathscr{D} and [1] can be characterised as the subalgebra of operators that remain unchanged by this action. We can now define the following projectors:

$$
\begin{align*}
& P_{[1]}=\left[\frac{1}{3}\left(1+\varphi_{G}+\varphi_{G}^{2}\right)\right]\left[\frac{1}{2}\left(1+\varphi_{T}\right)\right] \\
& P_{\left[3^{+}\right]}=\left[\frac{1}{3}\left(2-\varphi_{G}-\varphi_{G}^{2}\right)\right]\left[\frac{1}{2}\left(1+\varphi_{T}\right)\right] \\
& P_{\left[3^{-}\right]}=\left[\frac{1}{3}\left(2-\varphi_{G}-\varphi_{G}^{2}\right)\right]\left[\frac{1}{2}\left(1-\varphi_{T}\right)\right] \tag{38}\\
& P_{[\Delta]}=\left[\frac{1}{3}\left(1+\varphi_{G}+\varphi_{G}^{2}\right)\right]\left[\frac{1}{2}\left(1-\varphi_{T}\right)\right] .
\end{align*}
$$

As indicated $P_{[1]}$ projects on the [1] algebra, $P_{\left[3^{+}\right]}$on the [3^{+}] module obtained with $\varphi_{3^{+}}=2 P_{2}-P_{0}-P_{0^{+}} \varphi_{\left[3^{-}\right]}$on the [$\left.3^{-}\right]$module obtained with $\varphi_{3^{-}}=P_{0^{+}}-P_{0^{-}} . P_{[\Delta]}$

Table 1. List of known partition functions in terms of $A_{1}^{(1)}$ characters.

$k \geqslant 1$	$\sum_{\lambda=1}^{k+1}\left\|\chi_{A}\right\|^{2}$	\boldsymbol{A}_{k+1}
$k=4 \rho, \rho \geqslant 1$	$\sum_{\substack{\lambda \text { odd }=1 \\ \lambda \neq 2 \rho+1}}^{4 \rho+1}\left(\left\|\chi_{\lambda}\right\|^{2}+2\left\|\chi_{2 \rho+1}\right\|^{2}\right) \sum_{\lambda \text { odd }=1}^{2 \rho-1}\left(\chi_{\lambda} \chi_{4 \rho+2-\lambda}^{*}+C C\right)$	$D_{2 \rho+2}$
	$=\sum_{\lambda \text { odd }=1}^{2 \rho-1}\left(\left\|\chi_{\lambda}+\chi_{4 \rho+2-\lambda}\right\|^{2}+2\left\|\chi_{2 \rho+1}\right\|^{2}\right)$	
$k=4 \rho-2, \rho \geqslant 2$	$\sum_{\lambda \text { odd }=1}^{4 \rho-1}\left(\left\|\chi_{\lambda}\right\|^{2}+\left\|\chi_{2 \rho}\right\|^{2}\right)+\sum_{\lambda \text { even }=2}^{2 o-2}\left(\chi_{\lambda} \chi_{4 \rho-\lambda}^{*}+C C\right)$	$D_{2 \rho+1}$
$k+2=12$	$\left\|\chi_{1}+\chi_{7}\right\|^{2}+\left\|\chi_{4}+\chi_{8}\right\|^{2}+\left\|\chi_{5}+\chi_{11}\right\|^{2}$	E_{6}
$k+2=18$	$\begin{aligned} & \left\|\chi_{1}+\chi_{17}\right\|^{2}+\left\|\chi_{5}+\chi_{13}\right\|^{2}+\left\|\chi_{7}+\chi_{11}\right\|^{2}+\left\|\chi_{9}\right\|^{2} \\ & +\left[\left(\chi_{3}+\chi_{15}\right) \chi_{9}^{*}+\mathrm{CC}\right] \end{aligned}$	E_{7}
$k+2=30$	$\left\|\chi_{1}+\chi_{11}+\chi_{19}+\chi_{29}\right\|^{2}+\left\|\chi_{7}+\chi_{13}+\chi_{17}+\chi_{23}\right\|^{2}$	E_{8}

does not project on any previously built module. [Δ] would in fact have been obtained by repeating the above construction with

$$
\begin{equation*}
\varphi_{\Delta}(N)=P_{0^{+} 0^{-}}+P_{0^{-}}{ }_{2}+P_{20^{+}}-P_{0^{-} 0^{+}}-P_{20^{-}}-P_{0^{+} 2} \tag{39}
\end{equation*}
$$

where $P_{0^{+} 0^{-}}$stands for $P_{\sigma_{N}=0^{+}, \sigma_{N+2}=2} \ldots$.
In the case of an arbitrary Dynkin diagram the module decomposition can be deduced from the analyses of modular invariant partition functions (Cappelli et al 1986). But various partition functions are listed in table 1; each term $X_{s} X_{5}^{*}$ in the partition function corresponds to a module (s, \bar{s}). In the D_{4} case, for example, the partition function is (Cardy 1986)

$$
\begin{equation*}
Z=X_{1} X_{1}^{*}+2 X_{3} X_{3}^{*}+X_{1} X_{5}^{*}+X_{5} X_{1}^{*}+X_{5} X_{5}^{*} \tag{40}
\end{equation*}
$$

We have the module decomposition

$$
\mathscr{D}^{+}=[1] \oplus\left[3^{+}\right] \oplus\left[3^{-}\right] \oplus[5] \oplus[\Delta] .
$$

It is therefore consistent to identify

$$
\begin{align*}
& {[5] \oplus[1]=(1,1)+(5,5)} \\
& {\left[3^{+}\right]=(3,3)^{+}} \tag{41}\\
& {\left[3^{-}\right]=(3,3)^{-}} \\
& {[\Delta]=(1,5) \oplus(5,1) .}
\end{align*}
$$

φ_{Δ} should therefore be the chiral operator (den Nijs 1984).
In the case of other Dynkin diagrams, we have not yet been able to recover modules (s, \bar{s}) with $\bar{s} \neq s$. In the general case, we conjecture that the complete decomposition of the lattice algebra \mathscr{D} considered as a module over the rLJ algebra coincides with the decomposition that can be derived from the partition functions in table 1.

Acknowledgment

I would like to thank V Jones for valuable discussions.

References

Akutsu Y, Kuniba A and Wadati M 1986 J. Phys. Soc. Japan 551466
Andrews G E, Baxter R J and Forrester J P 1984 J. Stat. Phys. 35193
Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (New York: Academic)
Belavin A A, Polyakov A M and Zamalodchikov A B 1984 Nucl. Phys. B 241333
Cappelli A, Itzykson C and Zuber J B 1986 Preprint Saclay SPhT/86-122
Cardy J L 1986 Nucl. Phys. B 270 [FS16] 186
den Nijs M 1983 Phys. Rev. B 271674

- 1984 J. Phys. A: Math. Gen. 17 L295

Dotsenko VI S and Fateev V A 1984 Nucl. Phys. B 240 [FS12] 312
Friedan D, Qiu Z and Shenker S 1984 Phys. Rev. Lett. 521575
Jones V R F 1983 Invent. Math. 721
Huse D A 1984 Phys. Rev. B 303908
Nienhuis B 1984 J. Stat. Phys. 34731
Nienhuis B, Berker A N, Riedel E K and Shick M 1979 Phys. Rev. Lett. 43737
Ocneanu A 1986 Preprint Pennsylvania University
Pasquier V 1987a Nucl. Phys. B 285 [FS19] 162

- 1987b J. Phys. A: Math. Gen. 20 L217, L221

Temperley H N V and Lieb E 1971 Proc. R. Soc. A 322251
van Beijeren H 1977 Phys. Rev. Lett. 38997

